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Wavefront construction (WF) ray tracing in tetrahedral 
models -Application to 3-D traveltime and ray path 
computations 

Zhaobo Meng and Norman Bleistein 
Center for Wave Phenomena Colorado School of Mines 

ABSTRACT 

For the purpose of building a fast and accurate tool for the computation of 
traveltimes and ray paths for 3-D depth imaging, we combine the techniques 
of tetrahedral model representation and 3-D wavefront construction (WF) ray 
tracing. The scheme is robust and efficient in the presence of complex earth 
structures. 

To efficiently represent a 3-D complex earth structure, a 3-D tetrahedral model 
as well as an auxiliary Cartesian cubic grid is used. In each layer, the "sloth" (the 
square of the slowness) is required to vary continuously, and specifically, in each 
cell, the sloth gradient is constant. The layers are separated by smoothly varying 
horizons. The tetrahedral model representation is based on the triangulation of 
the smooth horizons. 

WF ray tracing is used in the scheme. In WF ray tracing, rays are traced step- 
wise in traveltime through the model and are maintained by a triangular net- 
work, (i) to form the wavefront at each traveltime step, (ii) to evaluate quantities, 
such as traveltimes and ray paths at the receivers, and (iii) to interpolate new 
rays, whenever certain criteria are met. The quantities, such as traveltimes and 
ray paths, evaluated on a Cartesian cubic grid, are useful for depth imaging. 
For our kinematic ray tracing, which gives correct traveltimes and ray paths, an 
efficient alternative for dealing with caustics is presented. 

Key words: Tetrahedral model representation, WF ray tracing, traveltime 
and ray path computations 

Introduction 

Computation of traveltimes and ray paths is essential 
to many 3-D seismic depth imaging processes: Kirch- 
hoff prestack and poststack migration/inversion, migra- 
tion velocity analysis, tomography, and KirchhofF datum- 
ing. In this report, we discuss the approach to combining 
a tetrahedral earth model representation and wavefront 
construction (WF) ray tracing for the purpose of build- 
ing a fast and accurate tool for computing traveltimes 
and ray paths for 3-D depth imaging. 

The 2-D WF ray tracing was first introduced by 
Vinje et al. (1993). Chilcoat and Hildebrand (1995) and 
Vinje et al. (1996a) (1996b) extended the 2-D algorithm 

to 3-D, using Cartesian grid models or models with trian- 
gular networked interfaces (Vinje et al., 1996a). The WF 
ray tracing algorithm is robust, in part because it main- 
tains a reasonably consistent low ray density without 
making a priori estimates of the number of rays needed. 
This is attractive in complex 3-D applications, such as 
sub-salt imaging. The rays are maintained by a triangu- 
lar network, such that the representation of wavefronts, 
interpolation of new rays, and evaluation of quantities at 
receivers, become fairly simple and efficient. 

On the other hand, tetrahedral model representa- 
tion (Albertin & Wiggins, 1994), including model build- 
ing with triangular networked interfaces (Vinje et al., 
1996a) and (non-WF) ray tracing in tetrahedral models 
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(Stankovic & Albertin, 1995), have shown high efficiency 
in representing complex models with a reasonable num- 
ber of cells when compared to Cartesian grid modeling. 
For a complex model, where 3-D imaging is necessary, a 
Cartesian grid model usually gives a poor and inefficient 
description of the rays and wavefronts. As a result, for 
Cartesian grid models, fine grids have to be used and ex- 
cessive smoothing must be applied. This leads to higher 
memory cost and/or inaccurate estimates of quantities 
(such as traveltimes, and, even worse, for ray paths) for 
3-D complex models. It also leads to lower resolution in 
the imaging. Hence, tetrahedral models are needed for 
fast and efficient ray tracing and wavefront construction. 

In the following sections we describe highlights of 
our approach to developing a tetrahedral model builder 
and WF construction ray tracing scheme. 

Tetrahedral Representation of 3-D Complex 
Models 

In this section, we discuss how earth models are built. 
3-D ray tracing is not the only process that requires ef- 
ficient representation of an earth model. Earth models 
also play an important role in other modern 3-D depth 
image processing, such as migration, datuming and tomo- 
graphy, that rely on accurate representation of geologic 
models to obtain good images. 

Model building must combine geologic objects, 
such as horizons and regions. Horizons are surfaces 
that represent the medium discontinuities-in particular, 
velocity-and the regions are domains of continuous me- 
dium. Horizons and regions are two fundamental objects 
of 3-D models. 

It has been well-known that the Simplexes (segment 
in 1-D, triangles in 2-D and tetrahedra in 3-D) are the 
most efficient elements to construct complex structures. 
In this scheme, we will use triangles to represent hori- 
zons and wavefronts, and tetrahedra to represent regions 
between horizons. 

Tetrahedra are robust in representation of velocity 
discontinuities across horizons. However, in regions of 
continuous velocity, it is Cartesian grids that are more 
efficient; calculations of intersections (by solving polyno- 
mial equations) of ray paths with tetrahedral faces are 
more costly than with cubic grids. Thus, in this approach, 
a tetrahedral model and a Cartesian cubic grid are both 
used. The tetrahedral model or the Cartesian grid can 
be accessed as needed, e.g. using the tetrahedral model 
in representing velocity discontinuities across horizons, 
and using the Cartesian grid in regions between horizons. 
This facilitates fast and accurate ray tracing. 

We note that the capacity to represent the discon- 

Figure 1. A salt-dome defined by three functions, x(u,v), 
y(u,v) and z(u,v). Note that the grid spacing in x, y and z 
is related to the local curvature, and there are dips above and 
below 90°. 

tinuities of the model in 3-D depth imaging is important. 
The reason is that we use high frequency methods-ray 
methods-that are only valid if the physical parameters in 
the medium vary slowly over a wavelength; thus, they 
break down at discontinuities. The use of SnelPs law 
across the discontinuities overcomes this problem. 

Horizon triangulation 

To build a tetrahedral model, we first need to triangu- 
late the horizons. An efficient triangulation of a horizon 
should achieve a sufficiently precise representation of a 
complex horizon with a "cheapest" mesh. 

To begin, we represent a horizon by three functions, 
x = x(u, v), y = y(u, v) and z — z(u, v), of two paramet- 
ers, u and v. Parameterizations are useful to represent 
a multi-valued horizon using single-valued functions. 
Usually, u and v can be sampled uniformly. The discretiz- 
ation of the horizon in x, y and z should be dense enough 
to adequately describe the variation on the horizon, i.e., 
finer grids in x, y and z should be applied to areas with 
more rapid variations along the horizon. Then, by simply 
connecting all the grid points on the horizon that have the 
same parameter value u, and then, v: quadrilaterals are 
obtained. Finally, by cutting each quadrilateral into two 
triangles, the horizon is represented by triangles. As an 
example, Figure 1 is a salt-dome defined by such a para- 
meterization. Note that, in the figure, there are dips both 
above and below 90°. The grid spacing of the horizon in 
x, y and z is related to the curvatures, while x, y and 
z, in u and v, are uniformly sampled (the three x(u, v), 
y(u,v) and z(u, v) grids are not shown in the figure). 

Secondly, some auxiliary information about the ho- 
rizons must be provided. For kinematic ray tracing in 

* If the horizon is too complicated, more levels of paramet- 
erizations can be used, that is, to parameterize u and v as 
functions of new parameters, and so on. 
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this approach, we need the normal, a linear function of 
position, to each triangular tile. Providing such auxiliary 
information in advance will speed up the ray tracing cal- 
culations, compared to the case in which the information 

is computed as needed. 

The smoothness requirement of the triangulated 
horizons 

The smoothness of the triangulated horizons is important 
in ray tracing. The degree of smoothing that one uses is 
a compromise between the quality of the output and the 
cost of the computations. To correctly calculate the travel 
times and the ray paths, the normal, denoted by n, should 
be continuous (i.e. n € C°). This guarantees that the ray 
paths, as well as the traveltimes, vary continuously, de- 
pending on the variation of the horizons. If dynamic ray 
tracing or true amplitude evaluation is applied, the nor- 
mals should be continuously differentiable (i.e. n € C ); 
in other words, the horizons should be C1 for travel time 
and ray path computation, and C2 (continuously second 
order differentiable) for dynamic ray tracing (Cerveny, 
1987). This leads to different requirements for the orders 
of interpolation for the surface positions and the nor- 
mals when applying R/T (reflection/transmission) laws 
in the ray tracing, in order to make the modeling well- 
conditioned to the degree necessary. 

We note that, higher order of smoothing of horizons 
will be much more costly. For example, C1-smooth hori- 
zons used in this approach are represented by piecewise 
quadratic polynomials. The ray coordinates in a linear 
sloth model are quadratic functions of the ray running 
parameter, a (see Appendix A). Thus, solving for the in- 
tersection of a ray and a triangular tile on the horizon 
requires the solution of a 4th order polynomial equation. 

An efficient scheme for solving for the intersection 
of a ray with a triangular tile starts from a close initial 
guess for the intersection. Assuming the ray is straight at 
first, we solve for the intersection of the straight ray with 
the smoothed triangular tile, which only requires solu- 
tion of a quadratic equation. From this initial guess, the 
fourth order polynomial equation can be quickly solved 
iteratively. Note that a C2-smooth horizon (e.g. for dy- 
namic ray tracing and true amplitude computations) re- 
quires the solutions of 6th order of polynomial equation. 
Although the same technique can be applied, solving a 
6th order equation in this manner could be more costly 
and problematic. 

Here, we limit our approach to C1-smooth horizons, 
which gives correct traveltimes and ray paths. However, 
the higher order quantities, such as amplitudes may not 
be sufficiently accurately determined. Given a C°-smooth 
horizon, we have to address the problem of numerically 

constructing a C^-smooth horizon. Of course, there are 
different ways to do this. Our approach is to carry out the 
smoothing in three steps, as shown in Figure 2. Before 
the smoothing, the horizon is C°-smooth, each triangular 
tile is planar. In the first step, we assign the normal to the 
planar triangular tile to its centroid. In the second step, 
the normal to each vertex is interpolated using the nor- 
mals to the centroids of the nearest neighboring (usually 
of six) triangular tiles. The last step is to linearly inter- 
polate the normal to the (shaded in Figure 2) triangular 
tile. The first two steps are carried out in model build- 
ing, the last step is carried out during WF ray tracing. 
After this linear interpolation, the normal to the horizon 
becomes C°-smooth. Of course, the linearly interpolated 
normals are continuous across the boundaries of the tri- 
angles. Once a piece-wise linear C° normal function is 
defined, a piece-wise quadratic C1 triangulated horizon 
is a simple integration of the normal over the space. 

Tetrahedral regions 

A simplified tetrahedral region between two triangulated 
horizons can be obtained by straight line connections of 
the corresponding nodes (with the same indices in u and 
v) on the two triangulated horizons, e.g., as shown in 
Figure 3. A pair of triangles (shaded), one from each 
horizon, makes three tetrahedra by the following steps. 
First, we connect the apices of the triangles with straight 
lines. Then, two triangular tiles are made by cutting 
through apices 1-5-6 and 1-5-3. Finally, three tetrahedra 
are formed and named by apices 1-5-2-3, 1-4-5-6 and 1- 
5-3-6. The shortcoming of this simplification is that the 
number of nodes in each parameter (u or v) on all hori- 
zons must be the same. The advantage is that the tetra- 
hedra and the triangulated horizons can be stored using 
"arrays" that are more memory and computation effi- 
cient than "lists" that are used otherwise. So, again, this 
is a compromise between the computation cost and the 
quality. In Figure 4, a tetrahedral layer is formed by con- 
necting the two triangulated horizons. In Figure 5, a lens 
is described by connecting the two triangulated horizons 
which come together near the edges of the figure. 

WF Ray Tracing 

Vinje, et al. (1993) (1996a) (1996b), Chilcoat and 
Hildebrand (1995) introduced 2-D and 3-D WF ray tra- 
cing algorithms, either on Cartesian grids or models 
with triangular interfaces. Perhaps the most attractive 
feature of WF ray tracing is that, it interpolates new 
rays whenever certain criteria are met, such as, when 
the triangular wavefront section determined by its three 
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step 1 step  2 step  3 

Figure 2. The three steps to smooth the normals to C°-smooth (and thus the horizons to C'-smooth). Step 1, assign the normals 
to each centroid; step 2, linearly interpolate the normals to the vertexes using the normals to the centroids of the (six in general) 
neighboring triangular tiles; and step 3, interpolate the normal to the triangular tile (shaded) using the normals to the three 
vertexes. C1- horizon is obtained by integrating the C°- normals over the space. After the smoothing, the edges of each triangles 
are quadratic polynomials (see step 3). 

Figure 3. Three tetrahedra (1-5-2-3, 1-4-5-6 and 1-5-3-6) 
defined by a triangle from top horizon (shaded) and the other 
from the base horizon (shaded). 

Figure 4. A tetrahedral layer defined by connecting two non- 
uniformly sampled triangulated horizons. 

neighboring rays is too large, or the opening angle of its 

three neighboring rays is too wide. The WF algorithm 

also overcomes the problem of artificial shadow zones 

in conventional ray tracing. These arise because conven- 

tional ray tracing is initiated by a bundle of rays from a 

Figure 5. A tetrahedral lens defined by two horizons, which 
come together near the edges. 

source point with angular distribution assigned a priori. 

Thus may cause the lack of arrivals for large geomet- 

rical spreading in non-shadow zones, thus creating the so 

called artificial shadow zones. 

Propagation of wavefronts 

WF ray tracing is typically done shot by shot. The basic 

idea is, for each shot, given the source position, at t = 0, 

for each node (i.e. the intersections between rays and 

wavefronts), initialize the slowness vectors and quantit- 

ies such as traveltimes and ray paths, wave code (P or S) 

if the medium is not acoustic, etc.; then start to propag- 

ate the wavefronts. For each time step, for each ray, until 

the time increment At is reached, the ray is traced for- 

ward by increasing the parameter <x, using analytic for- 

mulas (see Appendix A). It is checked if this analytic ray 

intersects with any horizons within the small traveltime 

increment At. If it does, the R/T laws are applied to 

adjust the slowness vectors, ray and wavefront variables 
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at the intersections. When the At increment is reached 
for all rays, the wavefront is updated to the new posi- 
tion. The wavefronts for two consecutive time steps are 
kept in memory to facilitate interpolation of new rays 
and estimation of quantities at receivers. 

Triangular networking of the rays and 
wavefronts 

The above are the main steps. We did not address, here, 
how to numerically represent and maintain a wavefront. 
The standard 3D WF ray tracing scheme ((Chilcoat & 
Hildebrand, 1995), (Vinje et al, 1996a) and (Vinje et al, 
1996b)) uses triangular networks connecting the rays on 
a 3-D wavefront, which makes it fairly simple for the 
interpolation of new rays and evaluation of quantities at 

receivers. 
For example, Figure 6 gives a view of the triangular 

networked wavefront. At each time step, a wavefront con- 
sists of triangular tiles, the triangular tile is determined 
by its three neighboring nodes/rays. The three rays form- 
ing the triangular tile were the nearest (both in take-off 
angle and the azimuth) when they were shot off at t = 0 
from the source, but not necessarily the nearest at any 
other traveltime t ^ 0. 

At each time step, the distance and the angular dif- 
ference of tangents between any two rays bound by the 
triangle are checked. If the distance or the angular differ- 
ence of tangents become larger than a predefined quant- 
ity, a new ray must be added, and thus a new triangle 
is added as well, as shown in Figure 7. The new ray is 
interpolated using the three rays bound by that triangle. 
Note that both the distance and the angular difference of 
ray tangents increase unless the rays approach a caustic. 
The triangle and its three rays coexist, in a way that, 
when one ray among them goes out out of the model 
or runs out of the maximum traveltime, this triangle is 
eliminated. 

For many applications, it is the quantities (such as 
traveltime and ray paths) that are needed. The quantities 
at a receiver r which falls in, or very close to, the trian- 
gular prism (Figure 8) can be obtained by evaluation of 
the quantities at the three rays ri, V2 and r3. 

Handling caustics for kinematic ray tracing 

When a caustic exists, the traditional (dynamic) WF ray 
tracing removes the self-crossed part of the wavefront, 
and adjusts the wavefront at the triplication, so that the 
higher order quantities needed in dynamic ray tracing 
can be correct (Vinje et al, 1993). This can be very 
costly and problematic in numerical application, espe- 
cially for a 3-D complex model. For kinematic ray tra- 

Figure 6. The wavefront at a certain time in a homogeneous 
medium. The wavefront consists of triangular tiles, each tri- 
angular tile is determined by its three neighboring nodes/rays. 

t+At 

Figure 7. One new ray is added, and thus one triangle is 
added, as certain criteria are met. 

Figure 8. Quantities at a receiver r which falls in the trian- 
gular prism are interpolated using the three rays ri, r2 and 
T3- 
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Figure 10. Ray tracing in a model of two layers. Velocity is 2km/s above the horizon and 3km/s below the horizon. The 
wavefront is distorted and the rays bend when crossing the horizon. 

Figure 9. Ray tracing in a layered model consisting of 4 
layers including a lens (the third layer). Some interpolated 
rays in the 4th layer can be seen. 

cing, we present here an efficient alternative for dealing 
with caustics. We use the current wavefront (at time t) 
and the previous wavefront (at time t — At), to evaluate 
quantities (such as traveltime and ray paths) at receivers 
(usually a cubic grid). If quantities, such as traveltimes 
and ray paths, are evaluated more than once (which is 
easy to check numerically by setting up flags), only the 
one with smallest traveltime is kept; if the traveltime is 
the same, then check the ray path; only the one with the 

shortest ray path is kept. 

Conclusions 

For the purpose of fast and accurate traveltime and 
ray path computations, we have developed a tetrahed- 
ral model building algorithm and a WF ray tracing al- 
gorithm. The tool will be used for 3-D depth imaging, 
including prestack and poststack Kirchhoff migration, 
Kirchhoff datuming, tomography and tomographic mi- 
gration velocity analysis, etc. 

We have described here some of the features of the 
model building and the ray tracing algorithm. The tet- 
rahedral model representation for complex models uses 
a reasonably small number of elements with more ac- 
curacy, as compared to Cartesian grids. The WF ray 
tracing maintains a reasonably consistent ray density by 
a triangular network. Thus, the combination of the two 
techniques is robust and efficient. 

Several different models have been built for each of 
which ray tracing has been carried out. A 3-D prestack 
Kirchhoff migration algorithm using the ray tracer based 
on this report is currently in testing mode. 
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APPENDIX A: Formulations for linear sloth 
model 

In this appendix, we discuss the analytic ray tracing solu- 
tions for linear sloth model. Consider the 3-D acoustic 
wave eikonal equation, 

P2 = s, (Al) 

where p = p(x, <r) is the slowness vector, s(x) = l/u2(x) 
is the sloth, and v(x) is the propagation speed. We use a 
as the ray tracing parameter, which allows us to represent 
the ray path as a simple quadratic function (A8), in a 
linear sloth model. Then the ray tracing system can be 

written as, 

dx 
(A2) 

(A3) 

da 
(A4) 

The initial values are the starting point xo and the initial 
time to at initial value of the ray parameter a = 0. In 

addition 

p(x0,<T = 0) = po- (A5) 

As mentioned above, we assume the sloth to be linear 
in each cell and we define 

U = s(x0), 

A = Vs(x) = Vs(x0), 

(A6) 

(A7) 

where A is a constant vector in each cell. The ray tra- 
cing problem can now be substantially simplified. Be- 
cause sloth s(x) is the only function appearing in the 
formulas, the solution can be written as, 

0.2 
x(o-) = xo + <rpo + -T-A, (A8) 

PW - Po + I A, (A9) 
2 3 

t(a) = to + o-U + yA • po + ^A • A. (A10) 

Here xo, po and to are determined by continuity (or R/T) 
conditions applied to the incident and transmitted wave- 
fronts. 

APPENDIX B:  Best fit for linear velocity 
to linear sloth models 

In this appendix, we discuss the representation of a linear 
velocity model in a linear sloth model. Since the linear 
velocity model is popular among geophysicists, the trans- 
form of a linear velocity model to a linear sloth model is 
useful. In a linear velocity model, 

w(x) = v(xo) + B • (x - xo) + 0(\ x - xo |2). (Bl) 

where B is the coefficient for linear velocity. Then 

112 
v2(x)      i>2(xo)      v3(xo) 

from which it follows that 
2 

B- (x-xo), (B2) 

A = B(l + 0(|x-xo|))  
2B 

(B3) 
v3(x0)"

K" ' ~VI"     "" I" w3(xo)' 

Thus, the coefficient for linear sloth A can be approxim- 
ately obtained from formula (B3). 
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